

REPUBLIC OF RWANDA

INTENDED NATIONALLY DETERMINED CONTRIBUTIONS (INDCs) OF RWANDA

November 2015

FOREWORD

The Government of Rwanda recognizes the importance of climate change and its effects on both Rwanda and the international community. At the 17th session of Conference of the Parties (COP17) to the United Nations Framework Convention on Climate Change (UNFCCC) in 2011, Parties agreed that a new Climate Change agreement will be finalized in 2015 and come into force in 2020. As annex of the new agreement, all Parties agreed at 19th session of Conference of the Parties (COP19) to formulate and communicate to the UNFCCC Secretariat measures they intend to undertake at national level to mitigate global warming in the form of an Intended Nationally Determined Contributions (INDCs). Indeed, at 20th session of Conference of the Parties (COP20), Parties decided that Parties in a position to do so have to submit their INDCs in advance of 21st session of Conference of the Parties (COP21), scheduled to take place in Paris, France December 2015.

Rwanda as a signatory to the United Nations Framework Convention on Climate Change (UNFCCC), understands the importance of fulfilling the commitments and obligations of the convention particularly the principle of "common but differentiated responsibilities and respective capacities". As one of the Least Developed Countries, the contribution of Rwanda to the exacerbation of global warming is very minimal but we recognise the impact of climate change not only on the overall development of the country but also on the Rwandans. Therefore, in the bid of reducing vulnerability of our citizens and reducing Green House Gas (GHG) emissions from defferent sectors of our economy, Rwanda adopted the Green Growth and Climate Resilience Strategy (GGCRS) which has a vision for Rwanda to be a developed climate-resilient, low-carbon economy by 2050. Guided by the same strategy, Intended Nationally Determined Contributions (INDCs) for Rwanda are action based in nature and have been designed through a sector based consultative process. They reflect the national ambition by 2030 to join global efforts toward curbing global temperature rise below 2°C by 2100.

Dr. Vincent Biruta
Minister of Natural Resources
Republic of Rwanda

ACKNOWLEDGEMENTS

Rwanda Environment Management Authority (REMA) thanks all contributors who participated in the whole preparation process of Intended Nationally Determined Contributions (INDCs) for Rwanda by providing data, comments and inputs and participated in the review of the report. Among them are the following:

Advisory Teams

Government of Rwanda

Dr. Vincent Biruta, Minister of Natural Resources
Dr. Rose Mukankomeje, Director General of REMA
Eng. Coletha Ruhamya, Deputy Director General of
REMA

UNEP

Dr. George Manful Suzanne Lekoyiet

Production and Editorial Teams

Technical Coordination:

REMA

Faustin Munyazikwiye Herman Hakuzimana Immaculée Uwimana Patrick Mugabo

Production and Editorial:

Charles Mugabo, Local Consultant
Riyong Kim Bakkegaard, UNEP-DTU
Emmanuel Ackom, UNEP-DTU
Sudhir Sharma, UNEP-DTU
Denis Desgain, UNEP-DTU

Sectoral Contributors Jean Nduwamungu, UR- CAVM

Alphonse Mutabazi, REMA Desire Kagabo, RAB

Laetitia Busokeye, REMA Fabien Nshimiyimana, RHA

Emmanuel Twagirayezu, MINAGRI Dancila Mukakamali, ARECO-Rwanda Nziza

Aimable Gahigi, RAB Venuste Ntaganda, REMA

Svetlana Gaidashova, RAB Jacques Habimana, RENGOF

Denis Rugege, REMA Richard NIYONGABO, FONERWA

Jean Claude Hafashimana, RNRA Julius Othello, WASAC

Jean Claude Mutabazi, MININFRA Viateur Mugiraneza Ngirumpatse, REG

Marshall Banamwana, MINIRENA Joseph Mutabazi, RSB

Rachel Tushabe, REMA Emmanuel Niwenshuti, WASAC

Philbert Ciza, MoH Theoneste Higaniro, EDCL

Jean Baptiste Nsengiyumva, MIDIMAR William Nkubito, REMA

Cyprien Ndayisaba,RTDA Clarisse Kawera,REMA

Olivier Mbera, RRECPC Leonard KAYONGA, RNRA

John Mugabo, City of Kigali Aminadab Tuyisenge, METEO Rwanda

Francois Xavier Tetero, RNRA/IWRM Ignace Sendama, RNRA/IWRM

Donat Harerimana, REG Anicet Mushuti, REG

Madeleine Usabyimbabazi, MINAGRI Oreste Ndayisaba, RDB

Sabine Uwamariya, MIDIMAR

Table of Content

FOREWORD	i
ACKNOWLEDGEMENTS	ii
Table of Content	iv
Acronyms	vi
Introduction	1
Chapter one: National Circumstances	2
1.0 Introduction	2
1.1 National sustainable development context	3
1.1.1 Sustainable development goals and plans	3
1.1.2 Key development challenges	4
1.2 National climate change context	4
1.2.1 Climate change strategies, plans and objectives	5
1.2.2 National level institutional arrangements to address climate change	8
Chapter Two: Adaptation	10
2.1 Rationale and process for developing INDCs on adaptation	10
2.2 Summary of climate change trends, impacts and vulnerabilities	11
2.3 Long term and near-term adaptation visions, goals and targets	14
2.3.1 Typology of adaptation goals and targets	14
2.3.2 Adaptation Contributions	15
2.4 Means of Implementation	29
Chapter Three: Mitigation	30
3.1 Introduction	30
3.2 National GHG inventory for the latest year available	31
3.3 Mitigation actions and initiatives	31
3.4 Mitigation Contributions	32
3.5 Means of Implementation	42

3.6 Monitoring and reporting progress	43
Chapter four: Equity and Ambition	44
References	50
Annex	54

Acronyms

BAU Business As Usual
BRT Bus Rapid Transit

CAVM College of Animal Sciences and Veterinary Medicine

CDM Clean Development Mechanism

CO₂ and CO₂e Carbon dioxide and Carbon dioxide Equivalent

COP Conference of the Parties

EAC East African Community

EDCL Energy Development Corporation Ltd

EDPRS-II Second Economic Development and Poverty Reduction Strategy

FAO United Nations Food and Agriculture Organization

FONERWA National Environment and Climate Change Fund

GDP Gross Domestic Product

GGCRS Rwanda's Green Growth and Climate Resilience Strategy

GHGs Greenhouse Gases

GIS Geographic Information System

GoR Government of Rwanda

HFO Heavy Fuel Oil

ICT Information Communication and Technology

INDCs Intended Nationally Determined Contributions

IPCC Intergovernmental Panel on Climate Change

IWRM Integrated Water Resources Management

LDCs Least Developed Countries

LEAP Long-range Energy Alternatives Planning

LULUCF Land Use, Land-Use Change and Forestry

MCF Methane Correction Factor

MIDIMAR Ministry of Disaster Management and Refugee Affairs

MINAGRI Ministry of Agriculture and Animal Resources

MINECOFIN Ministry of Finance and Economic Planning

MININFRA Ministry of Infrastructure

MoH Ministry of Health

Mt Metric Tons

MW and MWh Megawatt and Megawatt hour

N₂O Nitrous Oxide

NAEB National Agricultural Export Development Board

NAMA Nationally Appropriate Mitigation Actions

NAPA National Adaptation Programmes of Actions

NGO Non-Government Organization

NISR National Institute of Statistics of Rwanda

PoA Programme of Activities

PPP Public Private Partnership

PTPS Public Transport Policy and Strategy Document

PV Photovoltaic (solar)

RCAA Rwanda Civil Aviation Authority

REG Rwanda Energy Group

REMA Rwanda Environment Management Authority

RHA Rwanda Housing Authority

RIMP Rwanda Industrial Master Plan

RIP Rwanda National Industrial Policy

RNRA Rwanda Natural Resources Authority

RoR Republic of Rwanda

RPZ Rural Productivity Zone

RRA Rwanda Revenue Authority

RREPC Rwanda Resource Efficient and Cleaner Production Centre

RSB Rwanda Standards Board

RTDA Rwanda Transport Development Agency

RURA Rwanda Utilities Regulatory Authority

RWF Rwandan Franc

RHA Rwanda Housing Authority

SE4ALL Sustainable Energy for All

SEZ Special Economic Zones

SMP Sustainable Mobility Project

SNC Second National Communication

SSATP Sub-Saharan Africa Transport Policy

UNDP United Nations Development Program

UNFCCC United Nations Framework Convention on Climate Change

USD or US\$ US Dollars

USDOT US Department of Transport

WASAC Water & Sanitation Corporation

WtE Waste to Energy

Introduction

Rwanda, known as the "land of a thousand hills" is a landlocked country of 26,338 square kilometres, geographically located in Central Africa between 1°04' and 2°51' of south latitude and between 28°45' and 31°15' of east longitude¹. Rwanda has seen significant economic development in recent years, with GDP growing at an average of over 8% per year over the last decade and targeted to reach 11.5 % under Vision 2020². It has a population of 10,537,222 people, which is growing at 2.8% per year³. A vision for 2050 based on the Green Growth and Climate Resilience Strategy envisages Rwanda as a developed climate-resilient, low carbon economy, with a strong services sector, low unemployment and low levels of poverty. By 2050, development will be achieved with low carbon domestic energy resources and practices, reducing Rwanda's contribution to climate change while allowing it to be independent of imported oil for power generation. Finally, Rwanda will have the robust local and regional knowledge to be able to respond and adapt to changes in the climate and the resulting impacts.

This document constitutes Rwanda's Intended Nationally Determined Contributions under the framework of the UNFCCC. This reiterates Rwanda's commitment to engaging in the international process in the development of a climate change agreement.

Rwanda has been committed to addressing the challenge of climate change since 1998 when it ratified the United Nations Framework Convention on Climate Change (UNFCCC) and later the Kyoto Protocol in 2003. Rwanda submitted its first National Communication to the UNFCCC in 2005, National Adaptation Programmes of Action (NAPA) in 2006, and the Second National Communication in 2012. Rwanda is currently working on the development of the Third National Communication.

Rwanda's INDCs is built upon its Green Growth and Climate Resilience Strategy. The full implementation of this strategy rests upon five enabling pillars: Institutional Arrangements; Finance; Capacity Building and Knowledge Management; Technology, Innovation and Infrastructure; and Integrated Planning and Data Management.

¹ Second National Communication report 2012

² Rwanda Vision2020 revised 2012

³ Fourth Population and Housing Census 2012

Chapter one: National Circumstances

1.0 Introduction

The Rwandan relief is hilly and mountainous between 1,400 and 3,000 m and geographically located in Central Africa between 1°04′ and 2°51′ of south latitude and between 28°45′ and 31°15′ of east longitude⁴. In Rwanda, the equatorial climate is deeply modified by the relief at varied altitudes ranging between 900 m in south-west, 1500 to 2000 m in the south and the centre of the country, 1800 to 3000 m in the highlands of the north and the west, and 3000 to 4507 m in the regions of Congo-Nile Crest and the chain of volcanoes⁵.

Natural rain forests constitute the highest proportion of the Rwandan forest cover (33%), followed by Eucalyptus plantations (26%) and degraded natural forests (15.7%)⁶. Most rain forests are protected whereas the degraded forests are regularly used for various domestic purposes. Forest lands that have not been degraded since 2000 are mainly located in Nyungwe, Birunga and Akagera National Park.

Rwanda is experiencing fast socioeconomic and demographic transformation since 2000. On average, GDP has been growing 8% annually since then, mainly driven by agriculture and services, that contribute to 33% and 47 % of the GDP respectively⁷. The agriculture-based growth has implications for the environment, due to overexploitation of the soil. Therefore, integrated management of this natural resource is necessary in order to achieve sustainable agricultural and economic development within the current framework of climate change.

At the policy and strategy level, protection of environment and sustainable natural resource management is one of the three cross-cutting areas in Vision 2020. In fact, Rwanda's Vision 2020 clearly defines the future of the country. Currently, the major areas of attention are the mainstreaming of environmental sustainability into productive and social sectors and reducing vulnerability to climate change. Considerable efforts are underway in the implementation of policies and strategies to support this: tree planting is being promoted and anti-erosion structures

⁴ Second National Communication report 2012

⁵ MINIRENA, 2006. National Adaptation Programmes of Action To Climate Change

⁶ REMA, 2009. Fourth National Report to the Convention on Biological Diversity

⁷ NISR, 2015. Integrated Household Living Conditions Survey, EICV4 (2013/14)

on steep slopes are being constructed and rehabilitated. There are also efforts in the conservation of biodiversity through strengthened protected area management⁸.

1.1 National sustainable development context

Sustainable development is a pattern of economic growth in which resource use aims to meet human needs while preserving the environment so that these needs of the present, and also the future generations can be met. The assessment of sustainable development is mostly done with reference to 'three pillars"-Economic growth, human development and environmental protection. These can be examined at local, national, regional or global levels⁹. The sustainable development context of Rwanda is discussed in the following paragraphs.

1.1.1 Sustainable development goals and plans

The government of Rwanda has already taken proactive steps to a more sustainable future. Vision 2020, Poverty Reduction Strategy Paper (PRSP), Economic Development and Poverty Reduction Strategy (EDPRS) and sector strategies all provide guidance for sustainable economic development and poverty reduction. They promote gender equality, equity and sustainable management of natural resources. Rwanda has implemented the PRSP from 2002 to 2005 to manage the transitional period of rehabilitation and reconstruction after the period of war and genocide against the Tutsi¹⁰. Good progress was achieved with better results in social sectors (health and education) than in productive sectors such as agriculture, infrastructure and the private sector. Hence, the below optimal performance in these productive sectors did not translate into significant reductions of poverty and inequality.

In view of responding to constraints faced during the implementation of the PRSP, EDPRS was developed for the period 2008-2012, focusing on three flagship programmes: sustainable growth for jobs and exports, Vision 2020 Umurenge program to address the issue of extreme poverty and vulnerability, especially in rural areas as well as good governance which focused on maintaining peace and security. The EDPRS guides the development of sector strategic plans and districts development plans¹¹.

⁸ REMA (2009): Rwanda State of Environment and Outlook Report

⁹ Republic of Rwanda, 2012. National Preparatory Process Report for RIO +20

¹⁰ MINECOFIN, 2011. EDPRS: Lessons Learned 2008-2011. Kigali, Rwanda

¹¹ Republic of Rwanda, 2012. National Preparatory Process Report for RIO +20

Currently, Rwanda is implementing the second EDPRS 2013 – 2018 for which the main objective is to devise Rwanda's medium-term strategy in order to put Rwanda on a higher growth trajectory and ensure that the country achieves middle-income status by 2020. To realise sustainable growth, Rwanda released its Green Growth and Climate Resilience Strategy in October 2011. The major goal of this strategy is to lead the country towards a sustainable and secure future, and prepare Rwanda to tackle the vulnerabilities and risks associated with climate change whilst balancing its needs for socio-economic growth.

1.1.2 Key development challenges

Land scarcity drives environmental degradation while environmental degradation exacerbates the effects of land scarcity. With a population density of 415 persons¹² per square kilometer, the highest density in Africa, Rwanda's population is around 83 percent rural and highly dependent on subsistence agriculture.

The rugged topography of the country, often referred to as the 'Land of a Thousand Hills', greatly increases the threat of soil erosion. It is estimated that half the country's farmland suffers moderate to severe erosion. Increasing intensity of agricultural land use and ongoing gradual agricultural transformation further increases the threat of soil degradation.

Cultivation has been pushed onto seasonally flooded bottomlands and steep, fragile slopes previously devoted to grazing and woodlots. Fallow periods are declining. Traditional land tenure systems exacerbate problems of fragmentation of agricultural land, further driving land degradation.

High demand for wood (and charcoal) for domestic fuel, industry and construction maintains pressure on the country's limited forest resources, which are mostly plantations of exotic tree species and a diminishing area of natural forest reserve. Virtually all rural Rwandans use biomass fuels, mostly firewood as the principal energy source.

1.2 National climate change context

The observed climate change in Rwanda is linked to the general circulation of winds and the variation of temperatures in the region of Central Africa where Rwanda is located. According to

¹² NISR, 2012. Population size, structure and distribution in Rwanda -fourth census.

Rwanda's second national communication to the UNFCCC¹³ and the GGCRS, Rwanda has experienced climate change for the past 30 years in terms of frequency, intensity and persistence of extreme changes such as heavy rain-falls, heat waves, drought and climate events such as El Nino and La Nina. Rwanda is currently highly vulnerable to climate change as it is strongly reliant on rain-fed agriculture both for rural livelihoods and exports of tea and coffee. Currently, Rwanda depends on hydropower for half of its electricity generation. In that case, reliance on Rwanda's energy to drive economic growth is highly threatened by climate change.

1.2.1 Climate change strategies, plans and objectives

Rwanda has put in place environmental policies and strategies to limit the losses linked to climate variability and to increase climate change adaptive capacity. This is in line with the overall strengthening of public sector management systems including compliance with international best practices. Some of the existing adaptation - mitigation policies and strategies in Rwanda are summarized in table 1.

¹³ Rwanda Second National Communication under the UNFCCC, MINIRENA

Table 1: Existing policies and programmes for mitigation and adaptation to climate change

SN	Policy/Strategy	Plan/goals
1	East African Community Climate	To guide Partner States and other stakeholders
	Change Policy (2010)	on the preparation and implementation of
		collective measures to address Climate Change
		in the region while assuring sustainable social
		and economic development. The policy
		prescribes statements to guide Adaptation and
		mitigation actions to address Climate Change ¹⁴ .
2	East African Community Climate	To ensure that: "The People, the Economies and
	Change Master Plan 2011 – 2031.	the Ecosystems of the EAC Partner States are
		climate resilient and adapt accordingly to Climate
		Change."
		The key sectors identified and prioritised by the
		EAC Partner States, as being vulnerable to climate
		change are: (1) Agriculture (crops, livestock and
		fisheries) and (Food Security); (2) Water Security;
		(3) Energy Security; (4) Ecosystems Services and
		Biodiversity; (5) Tourism; (6) Infrastructure
		(buildings, roads, railways, waterways and
		airways); (7) Human Health, Sanitation and
		Settlements; (8) Trade and Industry; (9)
		Education, Science and Technology ¹⁵ ;
3	National Adaptation Programmes	This document guides political decision makers
	of Action to Climate Change, NAPA	and national planners on priorities in vulnerable
	– Rwanda (2006)	economic sectors as well as strategies and
		priority actions of adaptation to climate change,
		and areclassified into six priorities:

¹⁴ EAC Secretariat, 2010. East African Community Climate Change Policy, Arusha.

¹⁵EAC Secretariat, 2011. East African Community Climate Change Master Plan 2011 – 2031. Arusha

		1)An Integrated Water Resource Management –		
		IWRM;		
		2) Setting up an early warning hydro-agro		
		meteorological information system and rapid		
		intervention mechanisms;		
		3)Promotion of non-agricultural income		
		generating activities;		
		4) Promotion of intensive agro-pastoral activities;		
		5) Introduction of climate-resilient species;		
		6) Development of firewood alternative sources		
		of energy.		
4	Rwanda Sectoral Analysis -	The report analysis focuses on identifying		
	Nationally Appropriate Mitigation	'business-as-usual' (BAU) baseline emission		
	Actions (NAMAs) (2015)	scenarios for the sectors and the potential		
		emissions scenarios under GHG mitigation		
		alternatives which would be applicable for NAMA		
		designs, and could attract international support		
		to implement selected NAMAs		
_		- 1		
5	Rwanda National Policy on	The major goal is the improvement of human		
	Environment (2003)	well-being, the judicious utilization of natural		
		resources and the protection and rational		
		management of ecosystems for sustainable and		
		fair development of Rwanda.		
6	National Green Growth and	This strategy builds upon work that is already		
	Climate Resilience Strategy (2011)	being done in Rwanda on climate change,		
		focusing the various projects and policies into a		
		holistic national document which encompasses		
		long-term direction and short-term actions.		
		Hence, the focus has been on adaptation as		
		Rwanda is highly vulnerable to climate change		
		due to its dependence on rain-fed agriculture.		

7 Other key Environment and Natural Resources Sector Policies includes:

- Urbanisation and Human
 Settlements Policy (2002)
- The National Land Policy (2004)
- The National Forestry Policy
 (2010)
- National Policy for Water
 Supply and Sanitation (2010)
- 5) The Mining Policy (2010)
- 6) National Policy for Water Resources Management (2011)
- The National Biodiversity Policy
 (2011)
- 8) Etc.

The adoption or revision of several national policy and related strategies is the result of national Vision 2020 and other regional and international agreements related to sustainable development.

1.2.2 National level institutional arrangements to address climate change

At the national level, the Ministry of Natural Resources (MINIRENA) is the Ministry responsible for designing and monitoring national policies related to climate change and environment, while Rwanda Environment Management Authority (REMA) is the official organ in charge of implementing national policies related to climate change and environment. In addition, the Department of Climate Change was established under REMA.

Successful implementation of the actions highlighted in this INDCs requires a close coordination and collaboration between MINIRENA, REMA and all potential stakeholders from private sector, civil society and public institutions including Ministry of Agriculture and Animal resources, Ministry of Trade and Industry, Ministry of Local Government, Ministry of Infrastructure, Ministry of Education, Ministry of Health, the Ministry of Finance and Economic Planning, Ministry of Disaster Management and Refugee Affairs, Rwanda Meteorology Agency, National Institute of Statistics, Rwanda Development Board, Rwanda Standards Board, Rwanda Agriculture Board; Rwanda

Energy Group; Water and Sanitation Corporation; Rwanda Natural Resources Authority, Rwanda Biomedical Centre, Rwanda Transport Development Agency; Rwanda Housing Authority; Rwanda Revenue Authority; National Industrial Research and Development Agency, research centres, and Universities, etc.

In order to coordinate and monitor the implementation of adaptation and mitigation actions in the different sectors, Rwanda has set up different bodies and institutional arrangements to operationalise these actions. Specifically, these are Green Economy Technical Coordinating Committee and the National Fund for Climate change and Environment (FONERWA), as a national green fund to mobilize additional internal and external climate funds. In addition, MINIRENA has been accredited as implementing entity for Adaptation Fund and Green Climate Fund (GCF) while REMA has been nominated as national designated authority for GCF. These institutions are based on a sector wide approach and work closely with development partners, civil society, academia and the private sector.

Chapter Two: Adaptation

2.1 Rationale and process for developing INDCs on adaptation

Rwanda is highly vulnerable to climate change, as it is strongly reliant on rain-fed agriculture both for rural livelihoods and exports of tea and coffee. According to the fourth population census, Rwandan population is projected to increase from 10.5 million in 2012 to 16.9 million (high scenario) to 16.3 million (medium scenario) or 15.4 million (low scenario) by 2032. This suggests that by 2030s the future size of Rwandan population would be approximately 50% more than the last 2012 census¹⁶. A direct consequence of this evolution is the unprecedented increase in population density: as high as 645 inhabitants per square kilometre according to the medium scenario putting more pressure on natural resources. As a result, adaptation concerns are central to Rwanda's INDCs.

Equally important, extreme weather events in Rwanda have increased in frequency and magnitude which, in some parts of the country, have led to significant losses of human lives, among other things. The National Adaptation Programmes of Action "NAPA" and the baseline report for climate change vulnerability index¹⁷ indicated that the Eastern and Southern Provinces of Rwanda are more vulnerable to drought risks while the Northern and Western Provinces are more vulnerable to intensive precipitation, floods and erosion. Generally, the expected adverse impacts of climate change in Rwanda include: high degradation of arable land (due to erosion), desertification trend, lower lake levels and degradation of forests¹⁸.

Rwanda is believed to have sufficient water resources, characterized by a good hydrological network (with the sources of the Nile originating in Rwanda's highlands), and 101 lakes and 860 wetlands covering 16% of the surface area of Rwanda¹⁹. Nevertheless, a lowering of water tables as well as impacts of reduced water flows has been observed especially, but not only, in eastern Rwanda. These impacts are at least partially attributed to climate change stresses (other drivers are related to non-climatic causes such as sub-optimal water resource and watershed management), which limit water availability.

¹⁶ NISR, 2012. Population Projections-the Republic of Rwanda Fourth Population and Housing Census, Rwanda.

¹⁷ Rwanda baseline climate change vulnerability index 2015

¹⁸ GoR, 2006. National Adaptation Plan of Action to Climate Change, MINIRENA.

¹⁹ REMA (2011) - Atlas of Rwanda's Changing Environment: Implications for Climate Change Resilience"

It is also important to highlight, the need for investments in soil and water conservation given the very small land holdings. Rwanda's topography, soil and nutrient erosion is a constraint to agricultural growth and a pressing environmental problem that also affect downstream countries. Climate change is likely to add to existing pressures including erosion through more intense rains. With this in mind, the economic diversification, improved soil and water management and increased use renewable energy sources are important for sustainable use of the country's natural resources and resilient communities²⁰.

2.2 Summary of climate change trends, impacts and vulnerabilities

Rwanda has experienced a temperature increase of 1.4°C since 1970 to date²¹, higher than the global average, and can expect an increase in temperature of up to 2.5°C by the 2050s from 1970. Rainfall is highly variable in Rwanda but average annual rainfall may increase by up to 5-10% by the 2030s from 1970²². Consequently, climate related incidences leads to torrential rainfall events, floods, draughts, storms and landslides.

Negative impacts of climate change will be exacerbated on the (i) irrigation potential for agricultural production, (ii) availability of good drinking water, and (iii) feasibility of hydro electrical schemes in place/planned in Rwanda. For example, lower water flows or frequent extreme flash floods often carrying high sedimentation loads, could lead to increasing high levels of siltation, and be worsened by severe erosion problem. These may adversely impact on microhydropower schemes, which will have to deal with more erratic water supplies, as well as higher maintenance costs, which need to be factored into designs²³.

The baseline climate change vulnerability index for Rwanda shows that The Southern Province has the highest sensitivity to climate change due to lower family income levels, less diversity in household incomes, higher levels of dependency within the household, less use of water catchment, less irrigation of fields dependent on rain fed agriculture, lower soil fertility and greater changes in the natural environment. In addition, the Southern Province appears to have the greatest potential vulnerability considering both exposure and sensitivity in Rwanda, followed

²⁰ Sida Helpdesk, 2013. Environment and climate change policy brief- Rwanda.

²¹ Republic of Rwanda, 2011. Green growth and climate resilience – National Strategy for Climate Change and Low Carbon Development

²² IPCC Fifth Assessment Report 2013, p. 1358.

²³ Republic of Rwanda, 2010. Assessment of Operational Framework Related to Climate Change in Rwanda, REMA.

by the Eastern Province, then the Western Province²⁴.Rwanda NAPA prioritised actions addressing the mutual influences and cumulative impacts of²⁵:

- High degradation of arable land due to erosion, following torrential regime of rains in Northern regions, Centre/West and floods in their downhill slope;
- Desertification trend in agro-bioclimatic regions of the East and South-East;
- The lowering of lake levels and water flows due to pluviometric deficit and prolonged droughts; and Degradation of forests.

These factors explain the vulnerability of Rwanda in a context of climate insecurity. In particular, the current strong dependency on natural resources makes economic activities directly dependent on climate conditions. Without sound environmental management, development activities in key sectors such as agriculture, industry, infrastructure, commerce, and energy can lead to significant environmental degradation that can undermine economic growth. Economic impacts are likely to be exacerbated by climate change, which through increased occurrence of floods, landslides and droughts, is likely to increase damage to infrastructure and property. Research has estimated that climate change could result in additional net economic costs (on top of existing climate variability) for Rwanda that are at least equivalent to a loss of almost 1% of GDP each year by 2030²⁶.

Climate change could affect water security and food security, and as a result, could increase levels of poverty and force subsistence farmers into informal urban settlements. Rwanda's energy security may be at risk as hydropower contributes 50% of electricity, making it vulnerable to variation in rainfall and evaporation. Droughts reduce generating capacity of hydroelectric dams, and floods increase soil erosion and siltation which can damage dams. As an example, the drought in 2004 in Rwanda reduced hydropower capacity so much that the government was forced resort diesel power plants in order to meet domestic demand. Joint regional projects are underway to complete four hydropower plants on the Rusizi River to supply Rwanda, the Democratic Republic of Congo (DRC) and Burundi with 500MW of hydropower. The power plants are being designed to use the maximum capacity of the current river flows, which may be affected by climate change and therefore affect the capacity and efficiency of the plants.

²⁵ Republic of Rwanda, 2006. National Adaptation Plan of Action to Climate Change, MINIRENA.

²⁴ REMA, 2015. Baseline Climate Change Vulnerability Index for Rwanda

²⁶ Republic of Rwanda, 2013. Economic Development and Poverty Reduction Strategy II, 2013 -2018.

Equally, tourism, one of Rwanda's largest earners of foreign exchange, is dependent on the survival of gorillas in the Volcanoes National Park, and the preservation of the Nyungwe and Gishwati forests and Akagera National Park. These areas of natural beauty are biodiversity hotspots which are highly vulnerable to changes in temperature and rainfall that could reduce viable habitat and allow the spread disease.

Climate change is expected to increase vulnerability to existing stresses, thus putting additional burdens notably on the rural poor, particularly amongst those living below the poverty line. As temperatures rise, diseases could spread to new areas, particularly higher altitudes. Out of the main livestock diseases in Rwanda, ticks (as ectoparasites), tick-borne diseases and trypanosomosis are the most likely to be sensitive to climate change.²⁷

It is important to mention that floods, landslides, and drought episodes constitute the major repetitive natural disasters for Rwanda associated with climate change often linked with El Nino/Southern Oscillation index (ENSO) episodes. Since the year 1902, a series of big famines, following prolonged droughts episodes has been registered in Rwanda. In 1999/2000 East and South-eastern regions of the country were seriously affected by a low agricultural production associated with La Nina 1999/2000 episode. The same case was reproduced in 2005/2006. Also, an increase of frequent prolonged droughts has been experience since the 1980's²⁸.

Consequently, the intensity of the catastrophe registered determines the gravity of the impact in the region and to the affected sectors. Once such catastrophe affects a group of populations, different sectors involved in socioeconomic development are also affected at different degrees. Therefore, in order to safeguard biodiversity and ecosystems services; to ensure food, water and energy security; and to support future socio-economic development, Rwanda must adapt to the changing climate and become climate resilient.

²⁷ Republic of Rwanda, 2011. Green growth and climate resilience – national strategy for climate change and low carbon development.

13

²⁸ Republic of Rwanda, 2006. National Adaptation Plan of Action to Climate Change, MINIRENA.

2.3 Long term and near-term adaptation visions, goals and targets

2.3.1 Typology of adaptation goals and targets

The major goal to alleviate and adapt the climate change in Rwanda is to continue to put in place strategies aiming at increasing resilience and reducing vulnerabilities of communities to climate change impacts by focusing on developing and implementing eco-friendly policies and strategies in all sectors of the economy²⁹. For the 'green economy' approach, priority area focuses on two targets related to (i) green urbanisation and (ii) the promotion of green innovation in industrial and private sectors³⁰.

The Rwanda's Green Growth and Climate Resilience Strategy also provide a number of principles, already given in Rwanda Vision 2020 and EDPRS. The principles as cited below ensure that no actions are taken that conflict with decisions already made by the people of Rwanda regarding their future prosperity. They are:

- i. Economic Growth and Poverty Reduction
- ii. Welfare and Wellness of all citizens in a growing population
- iii. Gender Equality and Equity
- iv. Sustainability of the Environment and Natural resources
- v. Good Regional and Global Citizenship

Inspired by the same strategy, adaptations contributions reported herewith for Rwanda's INDCs are outcome based. Qualitative and quantitative goals and targets are reported accordingly. Table 3 provides details of adaptation contributions for Rwanda.

_

²⁹ Republic of Rwanda, 2012. Rwanda Vision 2020. Revised ed. 2012.

³⁰ Republic of Rwanda, 2013. Economic Development and Poverty Reduction Strategy II, 2013 -2018.

2.3.2 Adaptation Contributions

Table 2: Adaptation contributions per sector

Agriculture			
Programme of	Actions	Description and goals/targets	Mitigation benefits
action			
1. Sustainable	1.1 Mainstreaming	Seasonal shortages of food supply as a result	Reduced GHG
intensification	agro ecology	of poor harvests caused by droughts and	emissions from land
of agriculture	techniques using	flooding and soil erosion are among the most	use change
	spatial plant	significant signs of how the agriculture sector	
	stacking as in agro	is vulnerable to climate change in Rwanda. In	
	forestry, kitchen	order to adapt to this situation, Rwanda	
	gardens, nutrient	intends to mainstream agro ecology	
	recycling, and	technologies in its current agriculture	
	water	intensification programme and other natural	
	conservation to	resource-based livelihood programmes. 100%	
	maximise	of the households involved in agriculture	
	sustainable food	production will be implementing agro forestry	
	production;	sustainable food production by 2030.	
	1.2 Utilising	The steep nature of Rwanda's topography	Reduction of
	resource recovery	coupled with very high population density	methane emissions
	and reuse through	(415 inhabitants / km²) ³¹ leads to several	from landfills
	organic waste	pressures on natural resources, including land,	
	composting and	and this remains the main reason for land	
	wastewater	degradation. Arable lands also show little	
	irrigation;	tolerance when it comes to climate change	
		effects like heavy rains and draughts. In fact,	
		heavy rains lead to soil erosion resulting in	
		fertility decline and low productivity.	

_

³¹ Fourth Population and Housing Census, 2012

Rwanda intends to promote recovery and reuse of both organic waste and wastewater in order to restore and maintain soil fertility. Organic waste use through composting, currently used at a small scale, will be implemented to reach 100% of the households involved in agriculture production countrywide by 2030. Waste water irrigation, mainly practiced in correction centers under national prisons services will be implemented countrywide by 2030. Reduce GHG 1.3 Using fertiliser Rwanda relies on imported inorganic fertilisers enriched compost for its agriculture intensification activities. For emissions from instance, 36000 Mt of these were imported in fertilizer 2014 and these importations are likely to manufacturing increase in the near future. Although good at processes increasing yields, intensive use of inorganic fertilisers has adverse impacts to the environment in general and climate change in particular. In contrast, the use of organic fertilisers by composting has many environmental benefits whereby it provides an excellent way to manage the huge volume of organic waste and utilise it in a productive manner. The effectiveness of composted organic waste can be further improved by enriching and blending it with nutrients (Nitrogen phosphorus). This technique ensures a more efficient use of inorganic fertilizers, and adds valuable organic matter to soils, which also maximizes terrestrial carbon in farm soils.

Rwanda intends to ensure the use of fertilizer

	enriched compost and shift from using pure	
	inorganic fertilizers by 2030.	
1.4 Mainstreaming	Increasing average temperatures, changes in	Reduced GHG
sustainable pest	precipitation and water shortage are seen as	emissions from
management	climate change aspects that result in pests and	enteric
techniques to	diseases proliferation.	fermentation
control plant	In order to adapt to this, Rwanda intends to	
parasites and	promote sustainable pest management	
pathogens	techniques that incorporates a cropping	
	system based on producing multiple crop and	
	fodder yields but which is also designed to	
	control plant parasites and pathogens such as	
	stemborers and striga weed. Rwanda also	
	intends to implement push-pull system using	
	Napier grass and desmodium legume to	
	manage pests under maize, sorghum, millets	
	and rain-fed rice plantations. The main	
	adaptation benefits of the push-pull system	
	are the increase of yields, soil fertility	
	improvement through nitrogen fixation and	
	provision of a continuous supply of fodder to	
	cattle from the harvest of Napier grass and	
	desmodium. Thisimproves milk yields of cattle	
	while reducing methane emissions as a result	
	of improved fodder regimes.	
1.5 Soil	90% of Rwanda's crop land is on slopes	Reduced GHG
conservation and	ranging from 5 to 50% which makes it	emissions from
land husbandry	vulnerable to climate change impacts like soil	farm land and
	erosion leading to permanent fertility loss.	increased carbon
	Rwanda intends to expand its soil	sink through agro
	conservation and land husbandry programmes	forestry practices
	trough:	
	Installation of land protection structures like	
 l	17	

		radical and progressive terraces where these	
		structures will be installed on 100% of the	
		relevant area by 2030;	
		Development and implementation of an	
		intensive agroforestry programme with a	
		target of covering 100% of arable land by	
		2030.	
	1.6 Irrigation and	The Rwandan agriculture mainly rain fed	Efficient use of
	water	which makes it vulnerable to weather shocks.	irrigation water
	management	Rwanda intends to increase investment in	reduce nitrogen
		irrigated agriculture to increase production,	losses including
		harness fresh water resources while ensuring	nitrous oxide
		food security to its population. Under this	emissions.
		action, district irrigation master plans will be	
		designed and small-scale schemes will be	
		developed where possible based on water	
		catchments, and farmer organisations trained	
		in their development. Agricultural land fitted	
		with operational irrigation infrastructure was	
		estimated at 4% of the total land with	
		irrigation potential in 2012. The overall target	
		of the new irrigation programme is to reach	
		11% by 2030.	
2. Agricultural	2.1 Add value to	Food stuff distribution faces challenges when	Reduced GHG
diversity in	agricultural	it comes to rural community market places	emissions as a
local and	products through	where traded commodities can be damaged	result of using low
export	processing to	under extreme weather conditions. Rwanda	carbon energy
markets	meet its own	intends to expand local markets by	sources and
	market demand	constructing market infrastructure, including	reduced transport
	for food stuffs;	roofed market facilities, serviceable road and	distance.
		transport networks, developing decentralized	
		village-based agricultural processing centers	
		that incorporate low-carbon sources of	
	1	1	

energy, such as biogas-digesters and solar driers, and decentralized compost plants.

This forms a conduit for agricultural-based trade based on less food miles for regionally and internationally imported food products.

Strengthening local markets will also build economic resilience in rural areas that is less dependent on linear commodity flows of raw goods leaving rural areas unprocessed and without added value.

Group based organizations involved in agriculture production and running agro processing facilities were estimated at 10% of the total operating group based organizations in 2014. The target is for this percentage to increase by up to 90% by 2030. Also the installed capacity of agro processing installations is to reach 1,200,000 MT by 2030 from 400,000 MT³² in 2014.

In addition, Rwanda targets to have 100% of farmers with access to services for post harvest treatment and storage of food crops and reduce post harvest losses to at least 1% by 2030 from 10.4%, 27.4% and 8.3% in 2014 for maize, beans and rice respectively. The use of solar energy in warehouses will be actively promoted.

-

³² Metric Tons

Forestry			
Programme of	Actions	Description and goals/targets	Mitigation benefits
action			
3. Sustainable	3.1 Promote	The Rwandan forestry sector provides	Reduced GHG
Forestry,	afforestation/reforesta	the main part of the primary energy	emissions through
Agroforestry and	tion of designated	needs (97% of cooking energy) to the	sequestration
Biomass Energy	areas through	population. Since 2002, there have	
	enhanced germplasm	been consistent gap in wood products	
	and technical practices	supply and demand with deficits	
	in planting and post-	reaching 12 million cubic meters in	
	planting processes;	2009. This deficit shows how the forest	
		sector is and likely to remain under	
		pressure. In order to deal with this	
		main issue, Rwanda intends to improve	
		the management of its forest	
		resources by increasing efforts in using	
		quality germplasm, planting trees at	
		the right time (rain season) and	
		improving post-planting care,.	
		Furthermore, the country intends to	
		use mixed-species approaches which	
		contribute greatly to the achievement	
		of both mitigation objectives and	
		adaptation benefits of ecosystem	
		resilience and biodiversity.	
		Through this strategic action, the	
		country's target is to achieve an overall	
		30% sustained forest cover of the total	
		national land surface by 2030 from	
		28.8% in 2013.	

3.2 Employ Improved	Land scarcity is a primary constraint to	Reduced GHG
Forest Management	the expansion of Rwanda's forest	emissions through
for degraded forest	resources. Rwanda should maximize	sequestration
resources;	the productivity of its many degraded	
	forest plantations which present an	
	opportunity to increase biomass supply	
	without converting additional land. By	
	2030, Rwanda will implement public	
	private partnerships to sustainably	
	managing all forestry plantations	
	through multiyear contracts with	
	forests operators (in cooperatives)	
	who will plant and maintain young	
	plantations until they reach their	
	commercial size.	

Tourism			
Programme of	Actions	Description and goals/targets	Mitigation benefits
action			
4.Ecotourism,	4.1 Maximise business	Rwanda will promote business	
Conservation and	tourism (the largest	conferences in efforts to maximize the	
Payment for	source of export	distribution and volume of business	
Ecosystem	revenues) through	travelers throughout the year. These	
Services	strategic conference	efforts will result in increased bed	
Promotion in	management in order	occupancy at available hotels and	
Protected Areas	maximise the	lodges within Kigali, and subsequent	
	distribution and	visitation to its surroundings including	
	volume of business	Volcanoes National Park (VNP),	
	travellers throughout	Nyungwe forest and Akagera National	
	the year	Park	
		Through this strategic action, Rwanda	
		expects business and leisure tourists to	
		increase from 545,000 people in 2012	
		to 1,262,000 people in 2030.	

Water			
Programme of	Actions	Description and goals/targets	Mitigation benefits
action			
5.Integrated	5.1 Establish a national	Rwanda will integrate management of	IWRM is expected
Water Resource	integrated water	water resources at the district and	to result in
Management and	resource management	community levels, define catchment	improved water
Planning	framework that	wide responsibilities, cluster	resources in both
	incorporates district	catchment partner-districts according	quality and
	and community-based	to sub-catchment regions, and improve	quantity. This will
	catchment	understanding of water users within	increase
	management;	districts and catchments.	opportunities for
		The national framework for IWRM will	hydropower
		be cascaded down to district and	development thus
		catchment levels. To this end,	reducing emissions
		catchments committees and water	from fossil fuels
		users associations (WUAs) will be	used for electrical
		established and trained at district level	power generation.
		to cover all the 30 districts by 2030.	
		Also, detailed catchment management	
		plans have will be developed and	
		implemented for all the nine identified	
		main catchments areas by 2030.	
	5.2 Develop water	To allow precise planning of water	
	resource models,	resources and improved allocation,	
	improved	Rwanda will develop water balances at	
	meteorological	district and catchment levels,	
	services, water quality	supported by hydrological models,	
	testing, and improved	improved rainfall monitoring, and a	
	hydro-related	better understanding of agro-	
	information	meteorology and water quality testing.	
	management; and	The important national water datasets	
		will be identified to enable monitoring	

of the water balance, model abstraction and future demand. Furthermore, assessments will be undertaken of water resources under a range of climate change scenarios. In this regard, surface water quality monitoring will be carried out on selected sites of main rivers. All the existing 53 gauging stations will be upgraded to automated real time data stations by 2030.

5.3 Develop a National Water Security Plan to employ water storage and rain water harvesting, water conservation practices, efficient irrigation, and other water efficient technologies.

Rwanda will establish a comprehensive National Water Security Plan to expand water storage and irrigation infrastructure, rainwater harvesting, water conservation and water efficiency practices. This strategic action brings together the national policies and strategies for irrigation, water supply and sanitation, IWRM and energy. In this regard, an assessment of the current water storage capacity will be carried out and the improved water storage will be the main outcome of the assessment with reference to the IWRM subsector strategic plan. Rwanda will also implement the water resources master plan which identified potential sites for multipurpose dam construction countrywide for improved water storage. In addition to the detailed design for one of the identified, others

 1		
	ated and finished by 2030.	
	harvesting will also be	
mandatory	and will be made an	
integral par	t building codes by 2030.	

Land use				
Programme of	Actions	Description and goals/targets	Mitigation	
action			benefits	
6. Integrated	6.1 Employ an	Given the size of the country and its very high	Combined actions	
approach to	integrated	demographic pressure, competition for land	under this	
Sustainable	approach to	will continue to grow with increasing pressures	programme will	
Land Use	planning and	from agriculture and livestock making land	result in availing	
Planning and	sustainable land	resources more vulnerable to climate change	more land space	
Management	use management;	impacts. Encroachment on sensitive areas will	which might be	
	,	persist until land reforms are completed.	converted to	
		Rwanda will implement rigorous planning and	others uses such as	
		zoning regulatory framework to manage the	new forest	
		changing demands on land. In addition to	plantations thus	
		initiatives like systematic land registration and	serving as carbon	
		implementation of land tenure regularization	sink.	
		reform. Rwanda intends to reduce the plot size		
		for single family houses from current 600 m ² to		
		300 m ² by 2016 and to 225 m ² by 2030.		
	6.2 Improve	Rwanda will develop National Spatial Data	This strategic	
	spatial data by	Infrastructure (SDI) to manage the nation's	action will result in	
	harnessing ICT and	land information resources and to identify the	better estimations	
	GIS (Geographic	fundamental datasets required to manage land	of GHG emissions	
	Information	and water resources, monitor land use and	from land use, land	
	System)	environmental change, support economic	use change and	
	technology;	development, and enable Rwanda to better	forestry thus	
		plan, monitor, and respond to the impacts of	improving planning	
		climate change. It is planned that the	and	
		establishment of the National Spatial Data	implementation of	
		Infrastructure will be operational by 2030.	specific mitigation	
			actions for the	
			same sector.	

Programme of action	Actions	Description and goals/targets	Mitigation benefits
7. Disaster Management	7.1 Conduct risk assessments and vulnerability mapping	Specific risk and vulnerability assessments are key for better planning and implementation of relevant adaptation actions. In addition to the countrywide vulnerability index that was completed recently, Rwanda will conduct risk assessments and initiate vulnerability mapping to develop effective disaster management systems. Risk assessments will be conducted and completed countrywide by 2030. Every five years, Rwanda will be updating the recently developed climate change vulnerability index as to reflect the real situation of vulnerability to Climate change at any given time in the country. In addition, other assessments (such as national communication) with a vulnerability assessment will be conducted periodically.	
	7.2 Establish an integrated earlywarning system, and disaster response plans 7.3 Employ	Rwanda is exposed to climate related disasters like droughts, floods and landslides. In addition to existing disaster management initiatives mainly focusing on preparedness, assessment, mitigation and disaster reduction, Rwanda will establish and early-warning system in order to prevent the impact of natural climate disasters on humans. Rwanda will also improve its capacity in disaster preparedness and mobilization and distribution of relief to populations affected by specific disaster events. Rwanda will implement the following community	

	disaster risk	that mitigate flood and landslide impacts; first aid	
	reduction (DRR)	training; and environmental and public health	
	programmes	awareness for disease prevention, particularly	
	designed around	following flood and storm episodes. In order to	
	local	reduce locally-specific hazards, relocation from	
	environmental	high risk zones is considered as one of the strategic	
	and economic	actions. In addition to households previously	
	conditions, to	relocated from high risk zones, Rwanda will	
	mobilise local	relocate additional 30 000 households by 2030.	
	capacity in		
	emergency		
	response, and to		
	reduce locally-		
	specific hazards		
8. Climate	8.1 improve	Rwanda will establish of additional observations in	
data and	observation	order to provide climate information necessary for	
projections	facilities to	future monitoring, climate trend detection,	
	provide all	management of climate variability, early warning	
	climate	and disaster management by upgrading and	
	information	maintenance of existing stations and calibration of	
	necessary for	meteorological instruments including weather	
	future	radar.	
	monitoring,		
	climate trend		
	detection,		
	management of		
	climate		
	variability, early		
	warning and		
	disaster		
	management		
		L	

2.4 Means of Implementation

The Government of Rwanda already spends a considerable portion of its annual budget on infrastructure which contributes to addressing the negative impacts of climate change by reducing vulnerabilities of its people and the environment. On the other hand, the full implementation of Rwanda's adaptation contributions requires predictable, sustainable and reliable support in the form of finance, capacity building and technology transfer.

Rwanda has conducted a study on economic impact of climate change in 2009 and an initial costing of 3 sectors from GGCRS which revealed that Rwanda needs 24.1 Billion USD for Energy, Agriculture and Water Resources Magagement for 2015 to 2030 (REMA, 2015).

The implementation of the above mentioned adaptation actions, requires continuous development and strengthening of Rwanda's capacities. Therefore, it is imperative to consolidate platforms for the exchange of knowledge and information related to adaptation at all levels of government, as well as to strengthen the networks with academic institutions and civil society.

Adaptation requires the introduction of climate smart technologies like climate smart agriculture. These require the transfer of technology from the developed to the developing countries to effectively and efficiently introduce in the proposed measures. Main adaptation technology needs have been identified for Rwanda with considering of agriculture as a priority sector for adaptation in Rwanda. Prioritized technologies include; seed and grain storage, agro forestry, radical terraces, drip irrigation, rainwater harvesting, integrated fertilizers and pesticide management, biotechnology for climate change adaptation of crops and sprinkler irrigation. Rwanda's constrained human resource capacity is a challenge facing climate change adaptation. Actions to build capacity must harness existing efforts as much as possible, in order to promote efficiency of investment in current resources. Capacity building initiative would support professional development in all the sectors proposed under adaptation.

At the national level, there is a need for synergetic efforts across the various sectors directly involved in the planning, implementation and monitoring and evaluation of programmes and projects.

In addition, Rwanda requires international support for the development of its own technologies as well as for technology transfer and innovation to increase its adaptive capacity. For Rwanda, the increase of investment in climate smart agriculture, water resources management and disaster prevention is of utmost relevance, as well as the development of an insurance market against hydro meteorological and catastrophic risks.

Chapter Three: Mitigation

3.1 Introduction

According to the UNFCCC decision as stated under Lima Call for Climate Action Decision -/CP.20, Paragraph 10, "...each Party's intended nationally determined contribution towards achieving the objective of the Convention as set out in its Article 2 will represent a progression beyond the current undertaking of that Party..." and also, "...the least developed countries and small island developing States may communicate information on strategies, plans and actions for low greenhouse gas emission development reflecting their special circumstances in the context of intended nationally determined contributions..." as stated in paragraph 11 of the same decision.

Although Rwanda has one of the lowest emissions per capita in the world, estimated at 0.4 tCO₂e/person, compared to a global average of 6.7 tCO₂e/person, as according to Rwanda's second national communication to the UNFCCC, the country is committed to integrate climate change into national development. In this regard, Rwanda has been implementing CDM projects since 2009 to date and since 2012; Rwanda has been implementing a Green Growth and Climate Resilience Strategy. This strategy touches all the sectors of the economy and will be implemented up to 2050.

Rwanda believes that the implementation of programmes and strategic actions proposed under this strategy for different sectors would be a great contribution toward climate change mitigation. Rwanda's mitigation contributions under this INDCs have been defined and proposed based on current and future implementation of strategic actions under the above mentioned strategy. Proposed strategic actions have been classified per sector.

Inspired by the same strategy and being the most recent greenhouse gases (GHG) mitigation design document available, Rwanda NAMAs were referred to when developing this mitigation part of the INDCs. Based on the interconnection between NAMAs and INDCs, countries were expected to look internally at NAMAs and other emission reduction measures like CDM and REED + as building blocks for their INDCs. NAMAs were expected to form the most important element of INDC and future of climate negotiations.

For consistency purposes and given the nature of the existing greenhouse gas emission reduction initiatives which are mainly planned - under different sector strategic plans, Rwanda's mitigation contribution is action based and is detailed per sector in section 3.4.

3.2 National GHG inventory for the latest year available

According to the Second National Communication in Rwanda³³, the total GHG emissions for the year 2005 considered as the baseline year, amount to 5,010.4Gg CO₂eq including agriculture with 3909Gg CO₂eq (78%), energy with 891.3Gg CO₂eq (17, 8%), industrial processes with 150.52Gg CO₂eq (3%), wastes with 47.25Gg CO₂eq (0.9%) and land use, land use change and forestry with 10.9Gg CO₂eq (0.2%). In addition, it was noted that the national balance between emissions and absorption was negative in 2005 with the total emissions of 5010.4Gg CO₂eq and total absorption of -8545Gg CO₂eq, the balance was -3534.6Gg CO₂ eq, i.e. absorption of -3534.6Gg CO₂eq.

Rwanda INDC takes reference on GHG emissions estimates for 2012 as a base year and projections for 2030 which were established in recent Rwanda's sectoral analysis for NAMA opportunities. These GHG emissions estimates and projections were established using three different internationally recognized model methodologies to quantify GHG emissions including IPCC Tier 1 national model, LEAP national model and CDM methodologies which are often based on the IPCC's 2006 Guidelines for National Greenhouse Gas Inventories.

3.3 Mitigation actions and initiatives

Rwanda has already taken proactive approach of a more sustainable future. Vision 2020, EDPRS, green growth strategy and other sector strategies all provide guidance for economic development and poverty reduction. They promote gender equality, equity and sustainable management of natural resources and recognise Rwanda's role in the region.

Several initiatives and actions aiming at reducing GHG emissions have been proposed and discussed under paragraph 3.4; They are reported under several sectors of the economy namely energy, transport, industry, waste and forestry.

Rwanda's mitigation contributions are outcome based in nature and only additional initiatives to business as usual have been identified and reported for the purpose of this INDCs.

Both qualitative and quantitative targets are reported accordingly.

_

³³ Rwanda Second National Communication under the UNFCCC, MINIRENA

3.4 Mitigation Contributions

Table 3: Mitigation contribution per sector

Programme of action	Actions	Description and ta	Adaptation benefits	
		Baseline scenario	Mitigation scenario	
1. Low	1.1 Establishment	In the current	Rwanda will increase the share of	Through
carbon	of new grid	national energy	renewable energy in country	these
energy mix	connected	mix, fossil fuel	power generation through	initiatives,
	renewable	electricity	construction of hydro, solar power	there will be
	electricity	generation makes	plants and methane to electricity	creation of
	generation	32% of the total	power plantshenceshifting from	off farm jobs
	capacity in the	generation	using fossil fuels for its electricity	thus
	form of large-	capacity, with a	needs. Further to this, Rwanda is	increasing
	scale hydro	projection of 46%	committed to create a regional	adaptive
	power plants and	in 2020 and much	interconnectivity through	capacities of
	solar PV power	more in 2030	construction of new transmission	local
		under business as	lines and sub-stations and will	communities.
		usual scenarios.	improve/upgrade existing ones	Availed
			This will allow the import of	electricity
			electricity that would be otherwise	will create
			generated from fossil fuel power	more
			plants (diesel or peat power plant)	opportunities
			to meet the futute supply and	for
			demand for energy.	diversified
				commercial
				activities in
				the
				construction
				industry and
				services for
				example.

2.Sustainabl	2.1 Installation of	Rural	Rwanda will establish up to 100	Rural
e Small	solar PV mini-	communities	solar PV mini-grids in rural	electrificatio
Scale	grids in rural	depend mainly on	communities, with total capacity of	n will create
energy	communities.	kerosene for their	up to 9.4 MW and will establish	additional
installation		lighting needs,	rural productive zones using	income
		wood fuel and	electricty for increasing the income	generating
		agriculture	generating potential of rural	activities for
		residues for their	communities.	communities
		cooking needs.		and lowers
				some of the
				daily energy-
				related
				burdens of
				community
				members,
				It will also
				contribute to
				the success
				of forestry
				management
				programmes
				where wood
				fuels are
				replaced by
				electricity
3.Energy	3.1 Increase	Currently	Through the energy utility, Rwanda	Demand side
efficiency	energy efficiency	demand side	will establish dedicated energy	management
and	through demand-	management is	efficiency and demand side	and energy
demand	side measures	not well	management unit to oversee the	efficiency
side	and grid-loss	undertaken in	design and implementation of	initiatives
manageme	reduction	Rwanda and grid	relevant efficiency programs to clip	would
nt		losses are	electrical peak demand. The	increase
		estimated at 23%	dedicated unit will also be in	opportunities

		charge of planning and	of more off
		implementing measures aiming at	farm jobs.
		reducing grid losses. These are	
		expected to drop from 23% c to	
		7.8% by 2030. The unit will also	
		investigate expanding and	
		managing bulk procurement and	
		distribution of ³⁴ CFLs for residential	
		customers (based on current	
		consumption and end-user	
		affordability) with targeted	
		subsidies for retrofits.	
3.2 Promote	Biomass is almost	Given the fact that poor	Adaptation
environmentally	wholly relied on	performing cook stoves are still	benefits
sustainable use of	for cooking and	used in most cases leading to	under these
biomass fuels	related uses by	inefficiencies in fuel consumption	initiatives
	both urban and	and health effects, Rwanda intends	rely in the
	rural households.	to increase the diffusion of	fact that they
	The single most	improved cook stoves and reach	will result in
	important	100% of all households in needs	reduced
	appliance in the	2030. Additional supporting	deforestation
	biomass sector is	initiatives are mainly the	thus ensuring
	the cookstove.	installation of 35 000 domestic	sustainable
	This determines	biogas digesters and 15	basic energy
	the efficiency	institutional biogas digesters	source.
	with which	annually, and increasing average	Further to
	biomass is used.	charcoal yields up to 50% by 2030.	this, indoor
	Wood fuel	In addition, Rwanda will enhance	airpollution
	consumption	the use of LPG ³⁵ through tax	will be
	including charcoal	reductions on importations.	reduced and

³⁴ Compact fluorescent lights³⁵ Liquefied Petroleum Gas

was estmated at	quality of life
4.2 Mt/year in	improved.
2010. With	Revenues will
continued	also increase
population	as a result of
growth and	energy
urbanisation , this	savings.
consumption will	
exceed	
11Mt/year by	
2030 under the	
business as usual	
scenario.	

Transport				
Programme	Actions	Description and targe	ts	Adaptation
of action		Baseline scenario	Mitigation scenario	benefits
4. Efficient	4.1 Bus	The Rwandan	A high rate increase in population of	Increase of climate
resilient	Promotion	transport sector is	vehicles and light duty vehicles	resilience by
transport	of public	experiencing a rapid	would lead to the high GHG	creating affordable,
system	transport,	growth of vihicles	emission scenarios in the future as	reliable and
	improveme	population and an	explained in the BAU. To avoid these	accessible transport
	nt of	increase in light duty	emissions, By 2030, Rwanda will	services to the
	transport	vehicles equipped	implement the following	community.
	infrastructu	with (post-1998 era)	actions:Construction of central Bus	
	re, setting	3-way catalytic	Terminal(s) and Customer Service	
	vehicles'	converters. It is	Centers in Kigali, Standardized Route	
	emission	expected that under	Optimization planning and	
	standards	the busines as usual	implementation,Planning,	
	and	scenario, the annual	rehabilitation and construction of	
	regulations	increase in	intra-modal passenger terminals,	
	and	population vehicles	Construction of 17 km BRT main	
	integrated	will reach 16.5%	corridor and 6 modern interchanges	
	national	from 12% while light	which will results in GHG emissions	
	transportati	duty vehicles will	reductions estimated 1,260,000	
	on planning	increase 20% by	tCO ₂ e.Construction of dedicated	
		2030.	"rush hour" high speed bus lanes,	
			Improvement of traffic and	
			pedestrian controls and street	
			lighting using solar pannels	
			Enforcing Fleet renewal and	
			scrappage (heavy, medium, mini-	
			bus),	
			Setting emission standards	
			(equivalent to Euro standards) for	
			new vehicles,	

	Use of higher fuel efficiencies and	
	low carbon technologies for new	
	vehicles, Standardized compliance	
	and inspections for non-Rwandan	
	registered vehicles,Integration with	
	International Airport and	
	convention/business center.	

industry resource mainly resulting from non Rwanda is	tigation scenario, committed to gy efficiency by agro-processing	Adaptation benefits These initiatives
5. Green 5.1 Scale up Industrial emissions are Under the mit industry resource mainly resulting from non Rwanda is	tigation scenario, committed to gy efficiency by	These initiatives
5. Green 5.1 Scale up Industrial emissions are Under the mit industry resource mainly resulting from non Rwanda is	committed to	initiatives
industry resource mainly resulting from non Rwanda is	committed to	initiatives
	gy efficiency by	
and efficiency to efficient technologies that achieve energ	agro-processing	will lower
private reduce energy are being used by plants starting with		consumption
sector demand in during the production industries as	large consumers	of wood
developm agro process. As Rwanda of wood fu	uels. By 2030,	fuels thus
ent processing pursues industrialization Rwanda inten-	ds to avoid total	sustaining
industries and development, under the GHG emission	n reductions of	adaptation
BUA scenario, the industrial 146,000 tCO2	e from Tea and	roles of
sector is expected to be the Coffee indust	ries. This action	forests.
fastest growing sources of will focus	on e energy	
GHG emissions. efficiency	improvements	
through the in	nstallation of less	
energy intens	sive equipments	
and technolo	gies for drying,	
roasting	packaging,	
improvements	s of water	
efficiency	through loss	
minimization,	recycling and	
reuse [.]		
5.2 Rwanda has prioritized the Rwanda will	establish Eco-	
Establishment development of industrial Industrial Pa	arks / Green	
of Eco- parks and special economic Industries C	Complex where	
industrial park zones (SEZs) for export following pri	inciples will be	
of Green oriented markets. applied:		
Industry Development of such The production	on of goods and	
complex industrial parks will require services in the	e industrial park	
significant energy and the must, at a m	ninimum comply	

concept of establishing green industrial parks will focus on reducing the carbon footprint of goods produced in these industrial zones through a greater use of renewable, energy efficient technologies and shared resources.

with defined standards; Any CO₂ emissions that remains after consideration of heating, cooling, fixed lighting and ventilation must be less that or equal to a pre defined carbon compliance limit. Any remaining CO2 emissions, from regulated energy sources must be reduced to zero The actual emission reduction potential can vary greatly based on the actual level of low carbon technologies implemented and in "zero-carbon" implementing emission principle, the reduction potential can be as high as 80-100% compared to a baseline based only on carbon intensive energy source.

Waste				
Program	Actions	Description and targets		Adaptation
me of		Baseline scenario	Mitigation scenario	benefits
action				
6.Implem	6.1Utilization	Under the BAU, the waste sector	With respect to the	Creation of off
entation	of urban	will undergo substantial growth	urban waste	farm jobs during
of Low	waste as a	in the future based on expected	management By 2030,	the
carbon	high value	population growth and	Rwanda is committed to	implementation
urban	resource	urbanisation. The majority of	achieve the following :	and operation
systems	stream	solid waste collected in urban	Development and	phases thus
		areas is centrally deposited. With	implementation of	enhancing climate
		this continued trend the	landfill regulations in all	resilience capacity
		expected baseline scenario of	urban areas ,	of local
		annual GHG emissions from	Extraction and utilization	communities
		landfills will be high.	of Landfill Gas (LFG) for	
			power generation;	
			approximately 586,000	
			tCO2e will be reduced	
			from this action.	

Forestry				
Program	Actions	Description and targets		Adaptation
me of		Baseline scenario	Mitigation scenario	benefits
action				
7.Sustain	7.1 Mandate	In 2012 Rwanda had a sink (or	Rwanda will apply a Sustainable	Most
able	licensing of	negative emissions) of -2,540,000	Charcoal Value Chain to reduce	notable
Forestry,	sustainable	tCO₂e. It is difficult to directly	the demand of wood in	benefits
Agro	charcoal	predict the future use of wood	charcoal production and	resulting
forestry	production	resources or BAU, due to various	downstream activities, leading	from this
and	techniques	streams of use, therefore the	to a potential net reduction in	measure are
Biomass		mitigation (sink) potential is	wood use of approximately	mainly;
Energy		derived for the savings of wood	5,770,000 tonnes between	improved
		resources not used under	2016 – 2030 (equal to	forest
		alternative emission scenarios.	5,770,000 tCO ₂ saved).	productivity,
				improved
				access to
				efficiently
				produced
				domestic
				fuels, jobs
				creation,
				and
				potential
				lower fuel
				(charcoal)
				cost.

3.5 Means of Implementation

In order to fully implement the strategic actions in mitigation, Capacity building, technology transfer and finance are the most important needs in Rwanda. Specific national needs are:

- Access to and overcoming barriers to the diffusion of appropriate clean technologies;
- Building of climate information systems;
- Promotion of renewable energies and energy efficiency, including the involvement of the private sector;
- Setting up of public-private partnerships.
 In this context, in addition to the specific mitigation strategies included above, the Government of Rwanda plans to:
- Promote and encourage the development, transfer and diffusion of climate technology; and
- Promote and encourage the mainstreaming of gender considerations in climate change issues;
- Promote and enhance climate change education, public awareness and capacity development through communication, training, information and knowledge management;
- Promote climate change research and development and information exchange in all sectors impacted on by climate change;
- Provide adequate support for policies and programmes that take into account the interactions between population dynamics, climate change and development, including the link between the national and sub-national governments;

The Government of Rwanda will continue to commit significant resources to climate change-relevant strategies. Rwandan communities, private sector and NGOs can also contribute significantly to these climate change-related activities through public-private partnerships.

However, the full implementation of the strategic mitigation actions is conditional on the support of international stakeholders. The implementation of the prioritised policies and actions assume the continued use of existing and planned national and international financial sources.

Implementation costs will be adjusted as more evidence-based information is obtained.. The costs for the implementation of additional policies and measures will need to be assessed at a later stage. Rwanda intends to meet its commitments and/or increase the level of its contribution through the use of international market mechanisms where appropriate, building upon the experience of the Clean Development Mechanism and other existing market mechanisms.

3.6 Monitoring and reporting progress

The Republic of Rwanda through the Ministry of Natural Resources holds the responsibility to monitor and evaluate the implementation of INDCs through regular stakeholders consultative engagement. This will ensure the effective updating and implementation of both mitigation and adaptation plans.

Chapter four: Equity and Ambition

Rwanda is a small and developing country with one of the lowest GHG emissions per capita in the world, estimated at 0.6 tCO₂eq/person compared to a global average of 6.7 tCO₂eq/person in 2005 (RoR, 2012). With Rwanda's Green Growth and Climate Resilience Strategy, contributing towards a low carbon and climate resilient future. This contribution is reflected in a fair and ambitious INDCs through policies and strategies that will see Rwanda improving the share of renewable energy in the nation's electricity generation, improving energy efficiency, increasing the forest cover through efficient land use and new forest plantations and agro forestry, waste to energy and the implementation of resilient transport systems thus reducing overall GHG emissions. Rwanda believes that this contribution guarantees an equitable commitment.

Rwanda ambitious contribution will lead to long term transformations in key sectors of energy, agriculture, transport waste, land use, land-use change and forestry that will decrease the future vulnerability of the concerned populations and territories. The implementation of Rwanda's Green Growth and Climate Resilience Strategy through different sector specific policies and strategies will support the commitments made by the international community.

All in all, above mentioned contributions from Rwanda will only be achieved if developed countries and other parties in the position to do so avail financial resources as well as adequate technology to reduce emissions and increase resilience of our citizen as requested by the obligations of the convention.

References

BNR, 2014. Annual Report 2014, National Bank of Rwanda, Kigali, Rwanda

EAC, 2010. Climate Change Policy, East African Community, Arusha, Tanzania

EAC, 2011. Climate Change Master Plan 2011 – 2031, East African Community, Arusha, Tanzania

EWSA, 2012. Biomass Use Survey in Urban and Rural Areas in Rwanda, Energy, Water and Sanitation Authority, Kigali, Rwanda

GoR, 2011. Green Growth and Climate Resilience: National Strategy for Climate Change and Low Carbon, Kigali, Rwanda

GoR, 2012. Environment and Natural Resources strategic plan, Government of Rwanda, Kigali, Rwanda

GoR, 2012. Rwanda Vision 2020 revised 2012, Government of Rwanda, Kigali, Rwanda

GoR, 2013a. Economic Development and Poverty Reduction Strategy 2013 –2018, Government of Rwanda, Kigali, Rwanda

IPCC, 2014. Fifth Assessment Report 2013, p. 1358. Intergovernmental Panel on Climate Change, Geneva, Switzerland

MINAGRI, 2012. Strategic Environmental Assessment of the Agricultural Sector in Rwanda, , Ministry of Agriculture and Animal Resources, Kigali, Rwanda

MINAGRI, 2013a. Annual Report FY 2012-2013, Ministry of Agriculture and Animal Resources, Kigali, Rwanda

MINAGRI, 2013b. Strategic Plan for the Transformation of Agriculture in Rwanda Phase III, Ministry of Agriculture and Animal Resources, Kigali, Rwanda

MINECOFIN, 2011. Economic Development and Poverty Reduction Strategy-phase one (EDPRS I): Lessons Learned 2008-2011, Ministry of Finance and Economic Planning, Kigali, Rwanda

MININFRA, 2010. National Policy & Strategy for Water Supply and Sanitation Services, Ministry of Infrastructure, Kigali, Rwanda

MININFRA, 2011. Urbanization and Rural Settlement Sector - Strategic Plan 2012/13 - 17/18, Ministry of Infrastructure, Kigali, Rwanda

MININFRA, 2012. Public Transport Policy and Strategy (PTPS), Ministry of Infrasrtructure, Kigali, Rwanda

MININFRA, 2012: Transport Sector Strategic Plan for EDPRS II. Ministry of Infrastructure, Kigali, Rwanda

MININFRA, 2013. Energy Sector Strategic Plan 2013/2014 - 2017/2018, Ministry of Infrastructure, Kigali, Rwanda

MININFRA, 2014a. Rwanda Energy Policy, Ministry of Infrastructure, Kigali, Rwanda

MININFRA, 2015a. Data Survey Information., Ministry of Infrastructure, Kigali, Rwanda

MININFRA, 2015b. Sustainable Energy for All Action Agenda - Draft Version 4, Ministry of Infrastructure, Kigali, Rwanda

MINIRENA, 2013. Five Year Strategic Plan for the Environment and Natural Resources Sector 2014-2018, Ministry of Natural Resources, Ministry of Natural Resources, Kigali, Rwanda

MINIRENA, 2013. Five Year Strategic Plan for the Environment and Natural Resources Sector (2014 – 2018). Ministry of Natural Resources, Kigali, Rwanda

NAEB, 2015. NAEB Strategic Plan 2013 – 2018, National Agriculture Export Board, Kigali, Rwanda

NISR, 2012. Population size, structure and distribution in Rwanda -fourth census, National Institute of Statistics, Kigali, Rwanda

NISR, 2014a. Fourth Population and Housing Census, Rwanda, 2012: Characteristics for households and housing, National Institute of Statistics, Kigali, Rwanda

NISR, 2015. Integrated Household Living Conditions Survey, EICV4 (2013/14). National Institute of Statistics, Kigali, Rwanda

REG, 2015. Power Generation mix in MW on December 23rd 2014, Rwanda Energy Group, Kigali, Rwanda

REMA, 2009. Fourth National Report to the Convention on Biological Diversity. Rwanda Environment Management Authority, Kigali, Rwanda

REMA, 2009. Rwanda State of the Environment and Outlook, Rwanda Environment Management Authority, Kigali, Rwanda

REMA, 2010. Assessment of Operational Framework Related to Climate Change in Rwanda, Rwanda Environment Management Authority, Kigali, Rwanda

REMA, 2011. Atlas of Rwanda's Changing Environment: Implications for Climate Change Resilience, Rwanda Environment Management Authority, Kigali, Rwanda REMA, 2015. Rwanda NAMA sectoral analysis. Rwanda Environment Management Authority, Kigali, Rwanda

REMA, 2015a. Baseline Climate Change Vulnerability Index for Rwanda, Rwanda Environment Management Authority, Kigali, Rwanda

REMA, 2015b. Combined GGCRS costing policy brief, Rwanda Environment Management Authority, Kigali, Rwanda

RHA, 2013. Urbanization and Rural Settlement Sector Strategic Plan 2012-2017, Rwanda Housing Authority, Kigali, Rwanda

RoR, 2006. National Adaptation Plan of Action to Climate Change. Republic of RwandaKigali, Rwanda

RoR, 2009. Rwanda State of the environment and outlook. Republic of Rwanda, Kigali, Rwanda

RoR, 2010. Assessment of Operational Framework Related to Climate Change in Rwanda, Republic of Rwanda, Kigali, Rwanda

RoR, 2011. Green growth and climate resilience – national strategy for climate change and low carbon development, Republic of Rwanda, Kigali, Rwanda

RoR, 2012 a. National Preparatory Process Report for RIO +20, Republic of Rwanda, Kigali, Rwanda

RoR, 2012 b. Rwanda -second National Communication report 2012. Republic of Rwanda, Kigali, Rwanda

RoR, 2012 c. Rwanda Vision 2020. Revised ed. 2012, Republic of Rwanda, Kigali, Rwanda RoR, 2012 d. Technology Needs Assessment and Technology Action Plans for Climate Change Mitigation and Adaptation, Republic of Rwanda, Kigali, Rwanda

RoR, 2013 a. Economic Development and Poverty Reduction Strategy II, 2013 -2018. Republic of Rwanda, Kigali, Rwanda

RoR, 2013 b. Report on Costing of Green Growth and Climate Resilience Strategy. Republic of Rwanda, Kigali, Rwanda

RoR, 2015 c. Rwanda baseline climate change vulnerability index 2015. Republic of Rwanda, Kigali, Rwanda

WASAC, 2014. Data Survey Information of Waste Sector, Water & Sanitation Corporation, Kigali, Rwanda

Annex

Annex 1: List of Consulted Stakeholders

Name	Institution	Contacts
Emmanuel Twagirayezu	MINAGRI	twagem@yahoo.fr
		0788640537
Gahigi Aimable	RAB	gaimable13@gmail.com
		078884427
Svetlana Gaidashova	RAB	gaidashova@yahoo.com
		0788538707
Jean Claude Hafashimana	RNRA	hafaclo05@yahoo.fr
		0788822928
Jean Claude Mutabazi	MININFRA	jclaude.mutabazi@mininfra.gov.rw
		0786111181
Banamwana Marshall	MINIRENA	bmars88@gmail.com
		0788861374
Ciza Philbert	МоН	cizaphilbert@gmail.com
		0788841626
Nsengiyumva Jean Baptiste	MIDIMAR	jbatigol@yahoo.com
		0782169606
Ndayisaba Cyprien	RTDA	cyprien.ndayisaba@rtda.gov.rw
		0788460491
Anicet Mushuti	REG	anicetm@gmail.com
		0788641878
Olivier Mbera	MINICOM	mberaolivier@gmail.com
		0788304682
Mugabo John	CITY OF KIGALI	mugjohn12@gmail.com
		0788716358
Tetero Francois Xavier	RNRA	fteterov@yahoo.fr
		0788466012